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A modeling approach for x-ray dynamical diffraction from multilayer Laue lenses �MLLs� with rough
interfaces is developed. Although still based on the principle of the distorted-wave Born approximation
�DWBA�, this model is formulated from the perspective of the physical scattering process, very different from
the conventional DWBA formalism. Using this model, one can study x-ray scattering from rough interfaces in
the regime of Fresnel diffraction and in the case of absorptive samples, for example, x-ray dynamical diffrac-
tion from MLLs with rough interfaces, which is hard to handle in the framework of the conventional DWBA.
Theoretical simulations for various MLLs with rough interfaces are conducted. It is found that interfacial
roughness results in a decrease in the local diffraction intensity, where the attenuation factor is a function of the
root-mean-square �rms� roughness versus the local zone width ratio. This study shows that if all zones possess
an identical rms roughness value that is less than half of the outmost MLL zone width, the focal broadening
effect due to roughness is almost unnoticeable, provided that the mean position of the interface does not
deviate from the required zone plate law. A further study shows that uncorrelated interfacial roughness can be
treated the same as interfacial diffusion, in which case a roughness factor similar to the “Debye-Waller factor”
can be used, and the pseudo-Fourier coefficients of the susceptibility function for an MLL �H. F. Yan et al.,
Phys. Rev. B 76, 115438 �2007�� have to be multiplied by this factor.
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I. INTRODUCTION

Recent progress in x-ray focusing optics has pushed the
frontier of x-ray microscopy into the 25–50 nm range.1–7

However, because of the small refraction power of materials
for x rays, many of these x-ray optics possess a lower focal
limit of about 10 nm.8–10 In order to overcome this limit and
achieve true nanometer-scale resolution, a novel diffractive
focusing optic called a multilayer Laue lens �MLL� has been
proposed and developed.1,11,12 To date, a line focus of 16 nm
has been achieved by MLL optics at energy of 19.5 keV.13

Theoretical studies indicate that MLL optics are capable of
achieving subnanometer foci when ideal structures without
imperfections such as zone placement error or interface dif-
fusion and roughness are used.14 Unfortunately, imperfec-
tions always exist in real optics and will degrade their per-
formance. For example, a small zone placement error in an
MLL can significantly broaden its focal size and introduce
strong undesirable background.15 Interface roughness is an-
other common type of imperfection in MLL optics, and its
importance increases as zone width decreases. According to
the Rayleigh criterion and the zone plate law, the focus size
of an MLL is scaled with its outmost zone width. For ex-
ample, in order to achieve 1-nm focus one has to fabricate an
MLL with 1-nm outmost zone width, which is composed of
just a few monolayers and the interface is rough on the
atomic scale. It is thereby critically important to understand
the magnitude and extent of the adverse effect of interface
roughness on MLL’s focusing performance.

There have been some prior theoretical works investigat-
ing the effects of interface roughness on zone plate
performance,16,17 but these studies were rather limited and
were restricted to a local region. On the other hand, the
distorted-wave Born approximation �DWBA� is widely ap-
plied in studying x-ray scattering from single or multiple

rough interfaces.18–23 DWBA yields an integral solution that
is well suited for carrying out a statistical average, and en-
ables one to study not only the coherent but also the inco-
herent �diffuse� scattering. The conventional DWBA formal-
ism, which stems from the two-potential formula in quantum
mechanics,24 utilizes the time-inverted solution as an eigen-
function to calculate the scattering matrix.19 The mathemati-
cal basis of this formalism is built on the fact that the
Green’s function for the unperturbed system �no roughness�
can be approximated as the time-inverted solution when �1�
the observation point is located at infinity �Fraunhoffer dif-
fraction� and �2� absorption is negligible so that the reciproc-
ity theorem holds.25 However both conditions are not satis-
fied for MLLs. The wave propagation after an MLL to its
focal plane falls into the regime of Fresnel diffraction and
because of the large section depth required to achieve high
efficiency, the photoelectric absorption inside an MLL can-
not be ignored. As a result the conventional DWBA formal-
ism is inapplicable here. Nevertheless the principle of
DWBA, splitting the perturbed system into an unperturbed
one and small perturbations, can be borrowed.

The aim of this paper is twofold: develop a modeling
approach for x-ray scattering from rough interfaces that is
not limited by the above two conditions, and apply it to
investigate the focusing performance of MLLs with rough
interfaces. This model is still based on the principle of
DWBA, but is formulated from the physical picture of the
scattering process. Without the need for applying Green’s
theorem, the difficulty of finding the proper Green’s function
is avoided. This model also yields an integral solution suit-
able for ensemble averaging. Moreover, by taking into ac-
count high-order corrections this modeling approach is ex-
tended to deal with a strong perturbation, which is the case
when interface roughness becomes comparable to the zone
width. Theoretical simulations show that stochastic rough-
ness results in a decrease in the local diffraction intensity.
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The attenuation factor turns out to be a function of the � /�x
ratio, where � and �x are the rms roughness and the local
zone width, respectively. It is found that when the ratio of
� /�xmin is less than 0.5, where �xmin is the outermost zone
width, an MLL suffers only a loss in the focusing efficiency;
the focal size is nearly unchanged. However, this broadening
effect on the focus size becomes more noticeable as this ratio
is increased to above 0.5, in which case the local diffraction
intensity in the outer part of the MLL is attenuated to nearly
zero. This leads to a reduction in the effective numerical
aperture since the outer part does not contribute to focusing
anymore.

A further study shows that uncorrelated roughness can be
treated equivalently to an interdiffusion problem for MLLs.
In such cases, one simply needs to use a roughness factor
similar to the “Debye-Waller factor,” exp�−Mh�
= �exp�i�h ·u��, where �h is the hth local reciprocal-lattice
vector, u is the random displacement vector of the interface,
and the angle bracket denotes the statistical average. The
pseudo-Fourier coefficients of the susceptibility function for
an MLL �Ref. 14� have to be multiplied by this factor to
account for the effect of roughness.

II. THEORETICAL MODELING

The electric wave field inside an MLL obeys the scalar
wave equation

�2E�r� + k2�1 + ��r��E�r� = 0, �1�

where k=2� /�, � is the wavelength of the incoming x ray,
and ��r� is the susceptibility function of the MLL. Splitting
��r� into two parts provides

��r� = �̄�r� + ���r� , �2�

where �̄�r� is the susceptibility function for the MLL with
flat interfaces �no roughness� and ���r� represents the fluc-
tuation of ��r� caused by interface roughness. ���r� is non-
zero only in the vicinity of the interface. Similarly, the solu-
tion to Eq. �1� may be written as two parts as well,

E�r� = Ē�r� + �E�r� , �3�

in which

�2Ē�r� + k2�1 + �̄�r��Ē�r� = 0, �4a�

�2�E�r� + k2�1 + �̄�r���E�r� = − k2���r�E�r� . �4b�

For given boundary conditions, the solution to Eq. �4a�, Ē�r�
�denoted as the reference wave hereafter�, can be obtained
using the approach developed previously.14 The solution to
Eq. �4b�, �E�r�, which corresponds to the additional fluctu-
ating wave induced by roughness, can be written as an inte-
gral equation by Green’s theorem,

�E�r� = k2�
V

G�r;r�����r��E�r��d3r�, �5�

where V is the whole volume of the MLL and G�r ;r�� is the
Green’s function satisfying

�2G�r;r�� + k2�1 + �̄�r��G�r;r�� = − ��r − r�� . �6�

So far no approximations have been made and the solution in
Eq. �5� is rigorous. In cases with weak scattering from rough-

ness, ��E�� �Ē�, as the first-order approximation, Eq. �5� can
be approximated to

�E�r� 	 k2�
V

G�r;r�����r��Ē�r��d3r�. �7�

This is the well-known first-order DWBA and has been
proved to be very powerful in the study of x-ray scattering
by rough interfaces. A great advantage of this formalism is
that the expression of the solution is ready for carrying out a
statistical average on the fluctuating wave. Solving Eq. �7�
boils down to finding the proper Green’s function in Eq. �6�,
which is usually cast into the form of the time-inverted so-
lution to Eq. �4a� under the following conditions: �1� the
observation point is at infinity and �2� there is no absorption.
However, both of them are invalid for the wave field calcu-
lation around the focus of a thick absorbing MLL. Conse-
quently, standard procedures of calculating the fluctuating
wave in the conventional DWBA cannot be applied here.
Instead, by considering a physical picture of the scattering
process we present a modeling approach that does not have
these limitations.

The physical picture described by Eq. �4b� comprises four
scattering processes:

�1� The first term on the right-hand side, k2��Ē, repre-
sents the scattering of the reference wave by roughness, and
is the internal source of the fluctuating wave.

�2� Terms on the left-hand side describe the propagation
and diffraction of the fluctuating wave, �E, inside the MLL
in the absence of roughness.

�3� The second term on the right-hand side of Eq. �4b�,
k2���E, represents the scattering of the fluctuating wave by
roughness and is a high-order scattering process.

�4� Processes 2 and 3 change the value of �E generated in
process 1 as it propagates through the MLL, forming a self-
consistent system.

Applying the first-order DWBA is equivalent to ignoring
the last two processes, so that it becomes very straightfor-
ward to calculate the fluctuating wave. The central idea here
is to divide the MLL into many segments with progressively
reduced section depth. Each segment consists of a very thin
slice of MLL with rough interfaces upfront and an MLL with
flat interfaces and section depth t−z� �Fig. 1�, where t is the
section depth of the whole MLL. The fluctuating wave is first
excited inside the very thin slice at z� �process 1� and then
propagates through the MLL with flat interfaces to its exit
surface �process 2�, during which dynamical diffraction is
taken into account. Consequently, the total fluctuating wave
on the exit surface of the MLL is the summation of contri-
butions from all segments,

�E�re� = �
0

t

dz�� �
	

pz��r;re�sz��r�dxdy , �8�

where sz��r� is the source fluctuating wave generated in the
thin slice at z�, re is a point on the exit surface, 	 is the
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cross-sectional area of the MLL, and pz��r ;re� is the propa-
gator that describes the propagation of the fluctuating wave
generated at z� from r to re. If the slice is sufficiently thin,
the scattering process within it is kinematical and the source
fluctuating wave can be calculated using Born’s approxima-
tion �BA�,

sz��r� =� � G0�r;r�����r��Ē�r��dx�dy� �9�

where G0�r ;r�� is the free space Green’s function satisfying

�2G0�r;r�� + k2G0�r;r�� = − ��r − r�� . �10�

This is the key approximation made in this model. Speaking
rigorously, the Green’s function satisfying Eq. �6� should be
used in calculating the source fluctuating wave in Eq. �9�, but
because the value of �̄ is very small �
10−5�, the interaction
between �E and �̄ can be neglected as dz� goes to zero. One
shall note that this approximation is only valid inside the
very thin slice. The propagation and diffraction of the fluc-
tuating wave in the rest of the MLL afterwards have to be
calculated by a dynamical model.

For convenience, G0 is expressed in reciprocal space,

G0�r;r�� =
i

8�2� �
−



 1

kz
exp�ik · �r − r���dkxdky,

kz = �k2 − kx
2 − ky

2. �11�

Because only the forward propagating waves are concerned,
kz is taken positive. Substituting Eq. �11� into Eq. �9�, one
arrives at

sz��r� =
ik2

8�2� �
−



 1

kz
exp�ik · r�dkxdky� �

�exp�− ik · r�����r��Ē�r��dx�dy�. �12�

Since an MLL is a one-dimensional �1D� focusing optic, here

it is assumed that the system is independent of y. After inte-
grating out the y dimension, which results in a 2� constant,
the fluctuating wave generated at z� can be written as a su-
perposition of many plane waves,

sz��r� =� Sz��k�exp�ik · r�dkx,

Sz��k� =
ik2

4�kz
� exp�− ik · r�����r��Ē�r��dx�,

kz = �k2 − kx
2. �13�

From now on we assume that all vectors have only x and z
components.

If only the wave field near the focus �which is mainly
contributed from plane waves with wave vectors k	k0� is of
interest, we have the approximation kz	k cos �, where � is
the tilting angle and k0 is the wave vector of the incident
plane wave �see Fig. 1�. Then right after the slice �z=z��, the
source fluctuating wave can be written as

sz��r� =
ik2

4�
� dkx

kz
� exp�ik · �r − r������r��Ē�r��dx�

	
ik

2 cos �
���r�Ē�r�, r = �x,z�� . �14�

This is simply the fluctuation of the susceptibility function at
z� multiplied by the reference wave at the same position and
some constants. Not surprisingly, this is what the
geometrical-optical theory predicts. Now if the propagator
pz��r ;re� is known, one can calculate the total fluctuating
wave on the exit surface.

It is known that for an incident plane wave exp�ik0 ·r�, the

reference wave Ē�r� can be expressed as a superposition of
many orders of diffracted waves which converge to the real
foci �or diverge from the virtual foci� of an MLL,14

Ē�r� = exp�ik0 · r��
h

Ēh�r�exp�ih�r�� . �15�

For simplicity, here an MLL with flat zones that follow the
simplified zone plate law is assumed; so one has

h =
h�

�f
x2. �16�

It is not difficult to extend this study to other types of MLLs.
Substituting Eq. �15� into Eq. �14�, one arrives at

sz��r� =
ik

2 cos �
exp�ik0 · r����r��

h

Ēh�r�exp�ih�x�� .

�17�

For an MLL consisting of many alternating layers A and
B, if uj�z� is the displacement function of the jth rough in-
terface along the x axis from its mean position, �� can be
expressed as

�� = �
j

�� j = ���
j

�− 1� jUj ,

FIG. 1. �Color online� Schematic of an incident plane wave
diffracted by an MLL with rough interfaces. Based on the principle
of DWBA, the perturbed system �graph on the left� is split into an
unperturbed one �top graph on the right� and perturbations �bottom
graph on the right�. The interaction between the fluctuating wave
and roughness is neglected in this drawing.
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Uj = 1, for 0 � x − xj � uj�z� if uj�z� � 0

− 1, for uj�z� � x − xj � 0 if uj�z� � 0

0, elsewhere,
�

�� = �B − �A, �18�

where xj =�j�f is the mean position of the jth interface. As
can be seen from Eq. �18�, although uj varies randomly, the
overall positioning of �� still follows the zone plate law
because �� is nonzero only at positions around xj. Based on
this observation one can postulate that the source fluctuating
wave sz��r� can be expanded into a similar series as in Eq.
�15�,

sz��r� = exp�ik0 · r��
l

Az�,l�x�exp�il�x�� . �19�

In order to obtain the correct form of Az�,l, we follow similar
procedures of deriving pseudo-Fourier series in Ref. 14. De-
fining a different variable,

X = sgn�x�x2, sgn�x� = 1, x � 0

0, x = 0

− 1, x � 0.
� �20�

In this way x is mapped to X point by point. As a result, one
has �for the MLL half on the positive x axis�

Xj = xj
2 = j�f .

After this variable transform, the MLL becomes a periodic
grating with a period of 2�f . Following this, one can perform
a Fourier transform with respect to X on the source fluctuat-
ing wave �Eq. �17�� written as

sz��r� = exp�ik0 · r��
−





�z����exp�i�X�d� , �21�

where

�z���� =
1

2�
�

−



 ik

2 cos �
���X,z���

h

Ēh�X,z��exp�− i�X�dX

=
ik

4� cos �
�

h
�

j

�− 1� j���
xj

xj+uj

Ēh�x,z��

�exp�ih�x� − i�x2�dx2. �22�

Because Ēh is a slowly varying amplitude function, its value
is nearly unchanged from xj to xj +uj. We simplify Eq. �22�
to

�z���� 	
k��

4� cos �
�

h
�

j

�− 1� jĒh�xj,z��

�
exp�i�hv − ���xj + uj�2� − exp�i�hv − ��xj

2�
hv − �

,

v = �/�f . �23�

Although �z� is a continuously varying function, due to the
overall periodicity of �� in terms of X its value concentrates
on separated spots,

� = lv, l = 0, � 1, � 2 . . . .

Hence we can write

sz��r� = exp�ik0 · r��
l

exp�ilvx2�

��
−v/2

v/2

�z��lv + ���exp�i��X�d��

= exp�ik0 · r��
l

Az�,l�x�exp�il�x�� ,

Az�,l�x� = �
−v/2

v/2

�z��lv + ���exp�i��X�d�� . �24�

Each wave component in the source fluctuating wave,
Az�,l�x�exp�ik0 ·r+ il�x��, propagates through the rest of the
MLL with flat interfaces and gives rise to a wave field on the
exit surface,

Ẽz�,l�re� = �
m

Ẽz�,l,m�re�exp�ik0 · re + im�x�� . �25�

In Eq. �25� Ẽz�,l�r� is the solution to

�2Ẽz�,l�r� + k2�1 + �̄�r��Ẽz�,l�r� = 0, �26�

with the boundary conditions

Ẽz�,l,l�x,z�� = Az�,l�x� and Ẽz�,l,m�l�x,z�� = 0.

Similarly, one can solve Ẽz�,l�r� using the technique devel-
oped in Ref. 14. From Eq. �8� one can see

� �
	

pz��r;re�sz��r�dxdy

= �
l

Ẽz�,l�re� = �
l

�
m

Ẽz�,l,m�re�exp�ik0 · re + im�x�� .

To elucidate the excitation of the fluctuating wave on the exit
surface, the sequential scattering processes are depicted in
Fig. 2. Consequently one arrives at

�E�re� = �
m

�Em�re�exp�ik0 · re + im�x�� ,

�Em�re� = �
0

t

�
l

Ẽz�,l,m�re�dz�. �27�

Further simplifications are possible. In many cases it is suf-
ficient to consider only the zeroth- and the negative first-
order diffractions �two-beam approximation; h , l ,m=0,−1�.
Equation �27� is then reduced to

�E−1�re� = �
0

t

�Ẽz�,0,−1�re� + Ẽz�,−1,−1�re��dz�,

HANFEI YAN PHYSICAL REVIEW B 79, 165410 �2009�

165410-4



�E0�re� = �
0

t

�Ẽz�,0,0�re� + Ẽz�,−1,0�re��dz�. �28�

Equation �28� describes two excitation modes of the fluctu-
ating wave:

�1� The zeroth-order component in the reference wave, a
plane wave, interacts with the roughness within a thin slice at
z� and strongly excites the negative first-order component of
the source fluctuating wave, which is diffracted dynamically
by the rest of the MLL with flat interfaces, resulting in a
fluctuating wave with both the zeroth- and the negative first-
order components on the exit surface.

�2� The zeroth-order component in the source fluctuating
wave is strongly excited by the negative first-order compo-
nent in the reference wave, and it also leads to a fluctuating
wave with both the zeroth- and the negative first-order com-
ponents on the exit surface as it propagates through the rest
of the MLL. Higher-order perturbations corresponding to the
interaction of the fluctuating wave with roughness are ne-
glected. Therefore this formalism is equivalent to the first-
order DWBA as was stated earlier.

It is evident that the first-order DWBA becomes invalid
when the fluctuating wave is comparable to the reference
wave. Since one expects that the actual diffracted wave will
deviate from the reference wave significantly as interface
roughness increases, high-order corrections are necessary in
this study. In other words, the interaction between the fluc-
tuating wave and roughness must be taken into account. The
reference wave needs to be updated during the calculation to
reflect the change in the actual wave field. Hence a different
reference wave should be used,

Ēh��xj,z�� = Ēh�xj,z�� + �Eh�xj,z��, h = 0,− 1. �29�

Because the diffraction occurs in the transmission geometry,
the fluctuating wave propagating to the front surface of a
slice is a superposition of fluctuating waves generated in all
preceding ones, and on its back surface the newly excited
fluctuating wave only affects the wave field in the subse-
quent region. This forward diffraction scenario indicates that

if we start the calculation from the first slice at z�=0 at

which Ēh� is known, the updated reference wave in the second
slice, which is only affected by the fluctuating wave gener-
ated in the first slice, corresponds to the actual diffracted
wave at this position. Using this, we can calculate the fluc-
tuating wave excited by the updated reference wave in the
second slice and update the reference wave in all subsequent
slices. This process is repeated until the last slice at z�= t is
reached and a solution to the original wave equation is ob-
tained. In such a way scattering processes 3 and 4 are taken
into account and one has

�E−1�r� = �
0

z�
�Ẽz�,0,−1�r� + Ẽz�,−1,−1�r��dz�,

�E0�r� = �
0

z�
�Ẽz�,0,0�r� + Ẽz�,−1,0�r��dz�, r = �x,z�� ,

�30�

where Ẽz�,l,m �l ,m=0,−1� is defined in Eqs. �25� and �26�
and Az�,l is defined in Eq. �24� with the updated reference
wave defined in Eq. �29�. To clarify the difference between
Eqs. �28� and �30�, calculation schemes corresponding to the
first-order DWBA and DWBA with high-order corrections
are illustrated in Fig. 3.

Behind the MLL, the wave field at a point rf= �� , t+L�
around the first-order focus can be calculated by Huygens-
Fresnel principle. Employing the stationary phase method to
integrate out the y dimension, one arrives at

E�rf� 	 −
i exp�i�/4 + ikL + ik0zt�

�L�
� Ē−1� �re�exp�i��x��dx ,

��x� = k�sin � − �/L�x + kx2�1/2L − 1/2f� , �31�

where f is the focal length. In this calculation a Fresnel ap-
proximation is applied. The prefactor outside the integral is
of no importance in this study and will be dropped in the
following discussion.

For a known height function uj of the jth interface, the
resultant aberration on the focus can be evaluated directly
from Eq. �31�. For stochastic roughness, however, a configu-
rational average has to be carried out. For uncorrelated
roughness one has

FIG. 2. The sequence of scattering processes. The hth wave
component of the reference wave excites the lth wave component of
the source fluctuating wave at z�, which is then diffracted by the
rest of the MLL with flat interfaces, resulting in the mth wave
component of the fluctuating wave on the exit surface.

FIG. 3. Calculation schemes of the first-order DWBA �left� and
DWBA with high-order corrections �right�. The right graph shows
that the reference wave at a position z� is updated every time when
the fluctuating wave generated in a preceding slice at z� propagates
to it.
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��E�rf��2� = �� �Ē−1�re� + ��E−1�re���exp�i��x��dx�2

.

�32�

Roughness correlation is beyond the scope of this paper and
is not considered here. Because the diffraction system de-
scribed by Eq. �26� is linear, averaging on the fluctuating
wave on the exit surface is equivalent to averaging on the
source fluctuating wave or, in other words, on Az�,l. Based on
Eq. �24� we first need to evaluate the average of the spectrum
function �z�. For a Gaussian random variable uj with rms
roughness � j and zero mean, it is easy to derive

��z�� 	
��k

4� cos �
�

h
�

j

Ēh��xj,z���− 1� j�1+�h−l��

�
exp�− i��xj

2�
�h − l�v − ��

�†exp„− ���h − l�v − ���2xj� j�2/2… − 1‡ . �33�

In Eq. �33� the following relationship and approximations are
utilized:

exp�i�h − l�vxj
2� = �− 1� j�h−l�, exp�i�h − l�vuj

2� 	 1,

and exp�− i��uj
2� 	 1.

These approximations are valid for a roughness of no more
than a few nanometers. In Fig. 4 we plot the averaged spec-
trum, assuming � j varies slowly over interfaces. As can be
seen from the plot, ��z�� has an appreciable value only
within a region much smaller than v. Therefore the integral
in Eq. �24� is mainly contributed from this region and one
can treat �� as zero in Eq. �33� except for the quadratic
phase term, which yields

�Az�,l�x�� 	
��k

4� cos �
�

h
�

j

Ēh��xj,z���− 1� j�1+�h−l��

� �
−v/2

v/2

d��
exp�i���x2 − xj

2��
�h − l�v

�„exp�− ��h − l�v2xjuj�2/2� − 1… . �34�

With the two-beam approximation, one arrives at

�Az�,0�x�� = −
��k

2� cos �
�

j

Ē−1� �xj,z��
sin��x2 − xj

2�v/2�
v�x2 − xj

2�

��exp�− �2vxj� j�2/2� − 1� ,

�Az�,−1�x�� =
��k

2� cos �
�

j

Ē0��xj,z��
sin��x2 − xj

2�v/2�
v�x2 − xj

2�

��exp�− �2vxj� j�2/2� − 1� . �35�

Due to the property of the Sinc function, only a few terms
with xj very close to x contribute significantly to the value
of �Az�,l�x��. If � j changes very slightly from one interface

to the other, we can treat both Ēl��xj ,z�� and
exp�−�2vxj� j�2 /2� as constants over a few interfaces near x.
In addition, for x not close to the first or the last interface, the
following approximation is valid:

�
j

sin��x2 − xj
2�v/2�

v�x2 − xj
2�

	 1.

As a result, Eq. �35� can be expressed into a fairly simple
form,

�Az�,0�x�� 	 −
��k

2� cos �
Ē−1� �x,z��„exp�− �2vx��x��2/2� − 1… ,

�Az�,−1�x�� 	
��k

2� cos �
Ē0��x,z��„exp�− �2vx��x��2/2� − 1… ,

�36�

where ��x� is a continuously varying function with ��xj�
=� j. One may recognize

2vx =
2�x

�f
=

2�

2�x
= ��x� ,

where ��x� is the modulus of the local reciprocal-lattice vec-
tor of the negative first order. Therefore it is more meaning-
ful to write the last term in Eq. �36� as

exp�− ����2/2� − 1 = exp�− ���/�x�2/2� − 1. �37�

This expression indicates that the magnitude of the source
fluctuating wave is determined by the � to �x ratio.

III. NUMERICAL SIMULATIONS

A. Known height function

For a known height profile, it is possible to calculate the
diffracted wave directly from the rigorous formalism.14 This

FIG. 4. The averaged spectrum of the source fluctuating wave
after performing a Fourier transform with respect to X, showing
narrow peaks centered at lv. The inset shows the peak at origin.
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provides the “experimental data” in a computer experiment
to check the correctness and validity of the DWBA modeling
approach developed in this paper. Let us consider an MLL
with flat zones and with the parameters f =2.6 mm, t
=10 �m, and xmax=16.5 �m, and an outmost zone width of
5 nm. It consists of thousands of alternating layers of WSi2
and Si. A plane wave at energy of 19.5 keV illuminates the
MLL at a tilting angle of 0.15°. It is assumed that all inter-
faces have the same height function

uj = u = u0 exp�− �z − t/2�2� . �38�

That is, each zone is displaced equally by a small distance
which reaches the maximum value of u0 in the middle. The
susceptibility function of this MLL is then written as

� = �0 + �
h,h�0

�h exp�ih�x − u�� = �0

+ �
h,h�0

�h�x,z�exp�ih�x�� , �39�

where

�0 = ��A + �B�/2,

�h�x,z� =
�A − �B

2ih�
�1 − �− 1��h��exp�i

h�

�f
�− xu + u2�� .

�40�

Now the coefficient of the hth �h�0� pseudo-Fourier com-
ponent is no longer a constant but is position dependent.
Substituting this expression into Eq. �16� of Ref. 14, one can
solve diffracted waves of different orders as well as the
change in the wave field, �E, associated with this small dis-
placement. For comparison, �E is also calculated from the
first-order DWBA �Eq. �28�� and DWBA with high-order
corrections �Eq. �30��. Two cases, corresponding to u0=1 and
3 nm, are studied and the results are plotted in Fig. 5. In the
case of u0=1 nm, the negative first order of the fluctuating
wave has weak amplitude. It is found that the result obtained
from the first order DWBA with the two-beam approxima-
tion agrees with that obtained from the rigorous calculation
very well, except for positions around x=6 �m. The differ-
ence observed around this position is attributed to the strong
excitation of higher orders of diffraction. A further study
shows that at this position the intensity of the negative sec-
ond order is not negligible due to a strong coupling with the
negative first order, which is a purely dynamical effect. On
the other hand, the two-beam approximation is sufficient in
the outer region where only the zeroth- and the negative
first-order waves are very strong.

When u0 is increased to 3 nm, however, a considerable
difference is observed between the first-order DWBA and the
rigorous calculation. This is because the requirement for the
validity of the first-order DWBA, ��E�� �E�, is not satisfied
any more. As can be seen in the inset of Fig. 5, the value of

��E−1 / Ē−1� exceeds 0.1 in most regions and reaches almost
0.5 in the outer part. The fluctuating wave can no longer be
treated as a small perturbation, and high-order corrections,
which take into account the interaction of the fluctuating

wave with roughness, are required. As was indicated earlier,
Eq. �30� has to be employed. The result obtained from Eq.
�30� shows good agreement with the rigorous calculation
again. Only in the inner part where other orders of diffraction
are not negligible there is a slight difference observed.

To check the validity of Eq. �30� in the case of a very
strong perturbation, we consider a second example where
wavy interfaces are present,

uj = u = u0 sin�z − t/2� . �41�

In the extreme case of u0=5 nm, the variation in the local
diffraction intensity of the negative first order on the exit
surface is plotted in Fig. 6 using the rigorous formalism, Eqs.
�28� and �30�. As can be seen from the simulation, the pres-
ence of a wavy interface leads to a quick decrease in the
local diffraction intensity to nearly zero in the outer region of
the MLL, and it is certainly beyond the range of validity of
the first-order DWBA. As expected, Eq. �28� fails to produce
the correct result. On the other hand, Eq. �30� is capable of
predicting precisely the variation in the local diffraction in-
tensity in the outer region even in this extreme case. The
small difference observed in the inner part as compared to
the rigorous calculation is again a result of the two-beam
approximation. It is evident that after taking into account
high-order corrections the DWBA model developed here is
also capable of dealing with a very strong perturbation. In
what follows and unless otherwise specified, the DWBA with
high-order corrections and the two-beam approximation �Eq.
�30�� will be employed for all theoretical simulations.

B. Stochastic roughness without correlation

For stochastic roughness, the average over ensembles for
all possible height functions has to be evaluated. For simplic-

FIG. 5. �Color online� The amplitude of the negative first-order
component of the fluctuating wave on the exit surface due to a
height function, u=u0 exp�−�z− t /2�2�. Results are calculated from
the rigorous formalism �solid line�, the first-order DWBA �Eq. �28�;
dashed line�, and DWBA with high-order corrections �Eq. �30�;
dash-dotted line�. The inset shows the ��E−1 / Ē−1� ratio.
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ity it is assumed that all interfaces possess roughness profiles
following the same Gaussian normal distribution with rms
roughness of � and zero mean. That is, the mean interface
position does not deviate from the desired value calculated
from the zone plate law. The MLL studied has the same
parameters as specified in Sec. IIA. Figure 7 shows the local
diffraction intensity of the negative first order when �=0 �no
roughness�, 1, 2, and 3 nm. As can be seen from simulation
results, interface roughness causes a decrease in the local
diffraction intensity and the qualitative amount of decrease is
proportional to �. It is seen that in all cases the local diffrac-

tion intensity of the inner part is affected much less signifi-
cantly than that of the outer part, which implies that the
attenuation factor ��x ,�� should be a function of � /�x,
where �x is the local zone width at x. This is also suggested
by the expression of Az�,l in Eqs. �36� and �37�. In the inset of
Fig. 7, attenuation factors at positions with �x=10, 6, and 5
nm are plotted in terms of the � /�x ratio. In this particular
case, they follow almost the same curve which can be fitted
by a function ��x ,��=exp�−b�� /�x�c�, with b=9.76 and c
=2.23. Using this function one can predict that when � /�x is
smaller than 0.1 the attenuation factor is about 0.94; thus,
one may consider that the local diffraction intensity is unaf-
fected. When � /�x is increased to 0.5 it drops down to 0.12;
a very significant decrease in the local diffraction intensity
will be observed. For the total focusing efficiency, which is
defined as the integrated local diffraction intensity normal-
ized by the integrated incoming x-ray intensity, it may be
convenient to plot its change in terms of the � /�xmin ratio.
The attenuation factor for the total focusing efficiency is
plotted in Fig. 8. We observe a less than 5% decrease in the
total focusing efficiency when � is smaller than 10% of the
outmost zone width, while an almost 50% decrease in the
total focusing efficiency is observed as � reaches 50% of the
outmost zone width.

In addition to the attenuation factor, focus profiles at �
=0, 2, and 4 nm �inset� and the change in the full width at
half maximum �FWHM� of the focal peak are also plotted in
Fig. 8. We can see that the focus size increases noticeably as
the value of � /�xmin approaches 1. This is because the elec-
tron density contrast in the outer region of the MLL is
smeared out and the local diffraction intensity is attenuated
so significantly that this region does not contribute to focus-
ing anymore �see Fig. 7�. When the � /�xmin ratio ranges
from 0 to 0.5, the FWHM of the focal peak only changes
slowly from 8 to 8.3 nm and this change may be considered
negligible. When this ratio is greater than 0.5, the focal peak
width increases quickly to a noticeable level.

Based on these simulations, we may conclude that if � is
smaller than 10% of the outmost zone width of an MLL, the

FIG. 6. �Color online� Variation in the local diffraction intensity
of the negative first order for wavy interfaces. Results are calculated
from the rigorous formalism, the first-order DWBA �Eq. �28��, and
DWBA with high-order corrections �Eq. �30��.

FIG. 7. �Color online� Variation in the local diffraction intensity
of the negative first order on the exit surface at different � values.
The inset shows the change in attenuation factor at different loca-
tions as a function of � /�x.

FIG. 8. The attenuation of the total focusing efficiency and the
focus peak half-width as a function of the � /�xmin ratio. The inset
shows focus profiles when �=0, 2, and 4 nm.
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effect of interface roughness is negligible in terms of both
efficiency and the focal size. Before � reaches half of the
outmost zone width, the MLL may suffer a significant loss in
the focusing efficiency while its focal size is not noticeably
broadened. As � increases to above half of the outmost zone
width, the broadening effect on the focal size becomes ap-
preciable.

However, due to the complexity of the dynamical diffrac-
tion, neither for the decrease of the focusing efficiency nor
for the broadening of the focus can an analytical expression
be derived. Their functional forms may change from case to
case. A numerical simulation has to be carried out in each
case. One particularly important case is the wedged
multilayer Laue lens �wMLL� with 1-nm outmost zone
width, which is the candidate optic for achieving 1-nm fo-
cusing at the planned National Synchrotron Light Source
II.26 A conceptual demonstration of wMLLs by sputtering-
deposition techniques has been reported.27 In practice it is
not possible to control the interface roughness within 0.1 nm.
Therefore the roughness problem is inevitable and its effect
has to be evaluated.

The wMLL considered here has the parameters f
=1 mm, t=16 �m, and xmax=31 �m and 1-nm outmost
zone width. It is illuminated by a plane wave at 19.5 keV in
normal direction ��=0�. Again, only half of the wMLL on
the positive x axis is considered. The jth interface of the
wMLL is determined by the zone plate law,

xj�z� = a�z��j�f + j2�2/4, a�z� = 1 − z/2f , �42�

which is also a function of depth z because of the wedged
shape of the zone. With a few modifications all equations
derived above for flat zones can be applied to wMLLs,

h�x,z� = hk���x/a�z��2 + f2 − f� ,

�Az�,0�x�� = −
��k

2�
Ē−1� �x,z���exp�− ��x��2/2� − 1� ,

�Az�,−1�x�� =
��k

2�
Ē0��x,z���exp�− ��x��2/2� − 1� ,

�x = � ��1

�x
� =

2��x/a�z���
a�z�����x/a�z���2 + f2

. �43�

Figure 9 shows the local diffraction intensities of the nega-
tive first order with rms roughnesses equal to 0, 0.3, and 0.5
nm. In the absence of roughness, the local diffraction inten-
sity curve may be divided into three sections. In section I
where the zone width is larger than 20 nm and the MLL
behaves more like a thin grating, low diffraction intensity of
about 0.13 is observed, in agreement with the number calcu-
lated from the geometrical-optical theory for a zone plate
with t=16 �m. In section II where the zone width is below
20 nm but is larger than 2 nm, the diffraction intensity is
boosted sharply to about 0.7 because of the strong dynamical
diffraction effect, and it only varies slightly in this section.
When section III is reached, the local diffraction intensity
decreases gradually to about 0.26 since the wMLL is only an
approximation to the ideal structure for focusing x rays.

When interface roughness is present, for �=0.3 and 0.5 nm
the local diffraction intensity in section I is unchanged be-
cause the value of � /�x is smaller than 0.1. In section II, the
attenuation starts to be appreciable around �x=3 nm for �
=0.3 nm and �x=5 nm for �=0.5 nm, in agreement with
the conclusions drawn previously for MLLs with flat zones.
As the � /�x ratio goes up further in section III, the attenu-
ation effect due to roughness becomes much more pro-
nounced. For instance, for �=0.5 nm at x=31 �m the local
diffraction intensity drops from 0.26 to 0.06, a more than
fourfold reduction. Unlike the case of MLLs with flat zones,
a simple attenuation factor ��x ,�� that works at all roughness
levels is not observed. Although an approximation of � can
be fitted by a similar function, �=exp�−b�� /�x�c�, it is
found that b and c vary with �.

Figure 10 shows the attenuation of the total focusing ef-
ficiency as a function of the � /�xmin ratio. Before this ratio
reaches 0.3, it can be seen that the attenuation is almost
negligible. When � increases to half of the outmost zone
width, the total focusing efficiency is reduced by about 22%.
The focal broadening effect due to roughness is also studied
in this case. For �=0 and 0.3 nm, a focal peak with 1.80 nm
FWHM is observed. When � is increased to 0.5 nm, the
focal peak width is increased slightly to about 1.95 nm due
to the fact that the diffraction intensity in the outmost region
drops down to nearly zero. This part of the lens does not
contribute to focusing effectively. We can see that the focal
broadening effect becomes more pronounced as � increases
further �see Fig. 10�, since a larger fraction of the lens will
have nearly zero diffraction intensity. Thus, the rms rough-
ness for this wMLL has to be controlled within 0.5 nm in
order not to see an appreciable broadening of the focus.

FIG. 9. Variation in the local diffraction intensity of the negative
first order of a wedged MLL with 1-nm outmost zone width for �
values of 0, 0.3, and 0.5 nm.
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IV. CONNECTION TO INTERDIFFUSION PROBLEM

One sometimes needs to consider the interdiffusion prob-
lem, i.e., the susceptibility function � varies gradually across
the zone boundary. As a result the MLL has graded interfaces
instead of sharp ones. An interesting question arises as to
whether one can equate a rough interface to a graded one. Of
course, in the case of a graded interface there is no diffuse
scattering that is related to roughness correlation. The discus-
sion here is restricted to uncorrelated roughness. We have
shown that averaging on the fluctuating wave after a segment
was equivalent to averaging on the source fluctuating wave
generated in the upfront thin slice, which yields �from Eq.
�14��

�sz��r�� =
ik

2 cos �
����r��Ē�r�, r = �x,z�� . �44�

Hence one can take the average on �� first and then calculate
the perturbation. If we take the susceptibility function

� = �̄ + ���� �45�

for an MLL with graded interfaces �for simplicity flat zones
are assumed�, the diffracted wave field within it should be no
different from that in an MLL with equivalent rough inter-
faces. For a Gaussian random variable uj, the mean suscep-
tibility function is

��� = �̄ + 0.5���
j

�− 1� j�sgn�x − xj� − erf� x − xj

�2� j
�� ,

�46�

where erf is the error function. Using the same technique of
deriving Az�,l�x�, one can expand ��� in Eq. �46� into a
pseudo-Fourier series,

��� = �
h

�h�x�exp�ih�x�� ,

�0 	 ��A + �B�/2,

�h�0�x� 	
�A − �B

2ih�
�1 − �− 1��h��exp�− �2hvx��2/2�, � j = � ,

�47�

which are simply the constant pseudo-Fourier coefficients for
MLLs with flat interfaces multiplied by a roughness factor,
exp�−Mh�=exp�−�2hvx��2 /2�, similar to the Debye-Waller
factor. We may express this factor in a more meaningful
form, exp�−Mh�=exp�−�h

2�2 /2�, where �h is the modulus of
the hth local reciprocal-lattice vector. If this is extended to
MLLs with arbitrary zone profiles, the roughness factor is
written as

exp�− Mh� = �exp�i�h · u��, �h = �h, �48�

where u is the random displacement vector of the interface.
Substituting Eq. �47� into Eq. �16� of Ref. 14, one can

solve the problem easily. In Fig. 11 the result calculated by
using a mean susceptibility function is compared with that
obtained from DWBA for �=3 nm. The MLL parameters
are the same as those used in Fig. 7. Very good agreement is
observed in the region with zone width smaller than 10 nm,
indicating that we can equate interface roughness to interdif-
fusion. The difference observed in the inner part between the
two models is due to a strong excitation of the negative
second-order diffraction which is also shown in the figure.
We note that using 1D coupled wave theory, Schneider16

previously demonstrated the similarity of the influence of
roughness and interdiffusion on a zone plate.

One shall note that the equivalence of interface roughness
and interdiffusion is a result of following observations:

�1� The interface roughness is completely uncorrelated.

FIG. 10. The attenuation of the total focusing efficiency and the
focal peak half-width as a function of the � /�xmin ratio for the
1-nm wMLL. The inset shows focus profiles when �=0, 0.4, and
0.8 nm.

FIG. 11. Variation in the local diffraction intensity of the nega-
tive first order calculated using a mean � and the DWBA. The
negative second order is also plotted.
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�2� The unperturbed system is linear, so that averaging on
the resultant fluctuating wave on the exit surface of the MLL
is equivalent to averaging on the source fluctuating wave.

�3� The source fluctuating wave can be simply written as
a product of the fluctuation of the susceptibility function and
the reference wave �Eq. �14��, so that averaging on the
source fluctuating wave is equivalent to averaging on ��. In
the x-ray domain, � is so small that the approximations made
in obtaining Eq. �14� is usually valid. However, if the wave
field far away from the focus is of interest, we have k	” k0
and Eq. �14� may not be valid.

�4� For strong perturbations an updated reference wave Ē�
has to be used in the calculation. As was discussed in Sec.

III, because of the transmission geometry the value of Ē� at
z� is not affected by the value of �� at the same position.
Therefore averaging on the source fluctuating wave is still
equivalent to averaging on �� at z�. That is, if the source
fluctuating wave is a function of ��, we have

�sz��r�� = �F����r��� = F�����r��� .

In the case where interface roughness can be treated in the
same way as that for interdiffusion, an exact solution for the
diffracted wave by using the roughness factor is obviously
superior to the DWBA method. But one should be aware of
the range of validity of all assumptions and approximations
made in reaching Eqs. �47� and �48�. On the other hand, the
DWBA modeling allows a calculation of the diffuse scatter-
ing and is more general.

V. SUMMARY AND CONCLUSIONS

In summary, a modeling approach for x-ray scattering
from multilayers with rough interfaces is developed. The
principle of DWBA is employed in this model, but it is for-
mulated from the physical picture of the scattering process,
different from the conventional method that utilizes the time-
inverted solution and is usually limited to Fraunhoffer dif-
fraction and nonabsorptive samples. This approach extends
DWBA into the regime of Fresnel diffraction and absorptive
samples, well suited for the study of x-ray diffraction from
MLL optics with rough interfaces. Moreover, high-order cor-
rections are also taken into account so that it can deal with
strong perturbations as well. This approach may find appli-
cability in other cases where the conventional DWBA fails.
The focusing performance of MLLs with flat and wedged

zones and with various rms roughnesses is studied. Simula-
tion results show that stochastic roughness results in a de-
crease in the local diffraction intensity. The theoretical study
suggests that the rms roughness to zone width ratio can serve
as a good parameter for quantifying the attenuation effect. It
is found that when this ratio is below 0.1, the loss in the local
diffraction intensity is usually negligible. In all cases studied,
when the rms roughness is smaller than half of the outmost
zone width of an MLL, no noticeable broadening effect on
focus is observed although the reduction in the total focusing
efficiency can be very considerable. We want to stress that all
calculations here assume zero errors on the mean interface
positions, so roughness does not introduce a big phase error
into the wave field on the exit surface. The main effect of
roughness is to attenuate the amplitude of the focusing wave.

The connection of interface roughness to interdiffusion is
discussed. For uncorrelated roughness, it is found that a
roughness factor similar to the Debye-Waller factor can be
used to describe the adverse effect of roughness on MLLs
focusing performance. In such cases, the pseudo-Fourier co-
efficients of the susceptibility function for an MLL have to
be multiplied by this roughness factor.

Roughness correlations, which will result in an additional
diffuse scattering term, are not discussed. One can deal with
them in the framework of the DWBA model developed here,
employing the diffracted wave solution obtained by using a
mean susceptibility function as the reference wave.28

For MLLs that are made of WSi2 /Si multilayers and fab-
ricated by sputtering-deposition techniques nowadays, in situ
synchrotron studies have revealed that the noticeably rougher
Si layer can be smoothened by the WSi2 deposition after-
ward and interface roughness can be controlled below 0.5
nm.29 According to the simulation shown in this paper, this
level of roughness will cause a considerable loss in the total
focusing efficiency, but will not broaden the focus size sig-
nificantly. As a result roughness should not be a showstopper
in practice for reaching 1 nm by MLL optics.
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